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Balanced H and H, Controllersm

W. Gawronski*,  and K.B. Lim#

Abstract-- A balanced H~ controller is defined and analyzed in this paper.
Gains of an Ho controller are obtained from the constrained solutions of two
Riccati equations. If the solutions are equal and diagonal, the controller is
H~ balanced. The transformation which generates the Hm balanced solution is
derived. Also, properties of the balanced H@ controller, as well as its
relationship to an H2 balanced controller and to an open-loop balanced
system, are presented.

A characteristic property of flexible structures is that they have
almost independent components in Moore balanced coordinates. It is shown in
this paper that the Hm balanced components are also almost independent and
that the open-loop and the Hm balanced representations almost coincide, This
property makes it possible to design reduced-order H@ controllers of
comparable performqce  to full-order controHers.
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1. INTRODUCTION

BALANCED REPRESENTATION of open-loop systems is a tool for system order
reduction, see Moore (198 1), Parnebo and Silverman (1982), Gawronski and
Juang (1990), and many other authors. Its simplicity and efficiency has
encouraged investigations of the balanced representations of model-based
controllers, with a goal to obtain reduced-order controllers of comparable
performance to full-order controllers. Balanced H2 controllers were studied
by Jonckheere and Silverman (1983), Opendacker and Silverman (1985), and
Gawronski (1993), while balanced H@ controllers were investigated by Mustafa
(1988). Note, however, that the balanced HO controller was obtained by
Mustafa for a special case of collocated control and exogenous inputs, and
collocatwl measured and controlled outputs.

Considerable attention has recently been given to the design of H@ and Hz
controllers for flexible structures, see for example Balas and Doyle (1991),

Carrier et al. (1991), Lim, Maghami, Joshi (1992), Lim and Balas (1992),
Gawronski  (1993). In this paper a generic Hm controller is analyzed. The
transformation to an Hm balanced representation is derived, and the
relationships betwcxm H@ and H2 characteristic values, H@ characteristic
values and Hankel singular values, and H2 characteristic values and Hankel
singular values were obtained. It is shown that in the case of flexible
structures the open-loop balanced representation and the H~ balanced
representation almost coincide, and that the components of a balanc~
controller are almost independent. Based on these facts, approximate closed-
form formulas for Hm characteristic values, for their upper and lower bounds
and for the closed-loop pole shift are derived. A controller reduction index
is introduced to facilitate a stable reduction of a controller that preserves
the performance of the full-order controller. Finally, the balanced H2
controller is obtained as a special case of the balanced H@ controller.
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2. BALANCED CONTROLLERS

Open-loop balanced system. Denote (A, Bk, CJ and k=l,2,  as the state-space
representations of stable, controllable, and observable open-loop systems,

where A k NxN, Bk iS NXPk, and ck is q#N. Their controllability and

observability grammians WC~ and Wok are positive-definite and satisfy the
Lyapunov tquations

A Wck+ Wc/lT +Bk@ =0, AT Wok+ Wo@ + ~ck =0 (1)

k=l,2.  The system representation is balanced in the sense of Moore (cf.
Moore (1981)) if its controllability and observability grammians are diagonal
and equal

wc~=wok=r~, rk=dhg(~kl,...,~k~,  k=l,2 (2)

and Tkj >0 is the jth Hankel singular value of the kth sYstem o

Central Hw controller. Consider a representation of a closed-loop Hm system,
with the plant transfer function G(s), and the controller transfer function
K(s), such that

I$I=G(S’PO ‘(S)=K(S)Y(S) (3)

\

u, w are control and exogenous inputs, and y, z measured and controlled
outputs, respectively. In the related state-space equations

i=AX+B1W+B2U,  Z= C1X+D12U,  Y= Q+D21W

(A,B2, CJ is stabilizable and are detectable, the conditions

DT2[C1 D12]=[0 q, D2,[~ D~I] ‘[o fl

(4)

(5a)
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are satisfied, and the matrices

(5b)

have full column rank, see Glover and Doyle (1988), and Doyle et al. (1989).
Let GZW be the transfer function of the closed-loop system from w to z, then
there exists an admissible controller such that II GZWIl~ < p, where P is the
smallest number such that the following three conditions hold:

1, SW=() solves the following central Riccati equation (HCARE)

20 SW=() solves the following central Riccati equation (HFARE)

S~T+ASm  +B#3f-S@(QC2-p-2CTC1)Sm  =0

and AmXfX)  is the largest eigenvalue of X,

4. The Hamiltonian matrices

[ HA  ~-2B1q-B2@

1
# p-2cfc~-~c2-Cfc, -AT ‘ -B1~ -A

do not have eigenvalues on the ju axis.

Balanced Hw controller. An Hm controller is balanced if the related
HFARE solutions are equal and diagonal,

Definition 1. The solutions of HCARE and HFARE are Hm balanced

4

(6a)

(6b)

(&)

(6d)

HCARE and

if



s% =S~=M~, Mu=diag(F~l,P~z,...  ,p~~, I%11WC02=. . . q.lm~ >0 (7)

where ~~i is the i-th H@ characteristic (or singular) value.

Let

Pm=sJ&,  Pw=sg2

denote N@= PWPm, and let

N.= v~mwm (8b)

(8a)

be the singular value decomposition
the state x such that ~= T~, then:

Proposition 1. For transformation T@

of, N. Consider the transformation Tm of

Tm =PWU#&~/2  =P&: V&MJ-/2 (9)

the representation mwlAT& T&1131, T&lB2,  CITm,  C2,TJ  is Hm balanced.

Proof The solutions of HCARE and HFARE in new coordinates are ~m = 7&SmTm,

i’%= T~lSmT~~. Introducing T@ as in Eq.(9)  gives the balanced HCARE and HFARE\
solutions. u

For the Hm balanced solution the condition in Eq. (6c) simplifies to

%1 <P, and p~~> O (lo)

Let  Xl> X2 (X12X2) denote that  XI-X2 is positive definite (positive

semidefinite).  The relationship between Hm characteristic values and open-

loop (Hankel) singular values is established, First note the following lemma:’
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Lemma 1, Derese and Noldus (1980). For asymptotically stable A, and V> O,
consider two Riccati equations:

AT$i +S#_si Wisi + V=09 i=l,2 (11)

then if W2~WlZ0, one obtains S1dzZO.

Let rl be a matrix of Hankel singular values of the representation

(A, BI,CI), c f .  M.(2),  a n d  Mm be a matrix of H@ characteristic values

defined in Eq.(7). Then:

Proposition 2. For asymptotically stable A, and for Bz~-P-2B1flz0,
~Cz-p-WfCIZO,  one obtains

M@=r~, o r /%iSVfi) ‘=]J...,N (12)

Proof This proposition is a consequence of bmma 1 applied to Eq.(6a), and
the second ~.(l), as well as Eq.(6b),  and the first
WCIZ& ~d WolHm. F r o m the latter inequalities

ai(WIC1)~~i(S~ and ~ifwO1)~~i(S~ (SW Horn and Johnson
7.7.4, p.471)$ thus ai@(ClWOl)2ai(SWS~~, or M~sr21.u

Eq.(1), obtaining
it follows that
(1985), Corollary

H2 controller. An H2 system is a special case of the Hw system, cf. Boyd and
Barratt (1991). It has similar representation as the Hm system in Eq.(4), and
its matrices A, 111, B2, Cl, C2, D12, D21 defined in the following. It
consists of state x, control input u, measured output y, exogenous input
WT = [v: V?, and regulated variable z= Clx +D12U, where vu, VY are process and
measurement noise, respectively. The noises vu and VY are uncorrelated, and
have constant power spectral density matrices Vu and VY, respectively. For
positive semidefinite matrix VU, the matrix 231 has the following form:

13, =[vp  q (13)

The task is to determine the controller gain (kC) and estimator gain (k.)
such that the performance index J
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m

1J = E  (XT@  +uTRu)dt
o

is minimal, where R is a positive definite

(14)

input weight matrix, and Q a
positive semi definite state weight matrix. The matrix Cl is defined through
the weight Q

[1Cl= Q?12 (15)

and, without loss of generality, assume R=l and VY =1, obtaining

[1D,2= ; , D2, =[0 1] (16)

The minimum of J is achieved for the feedback where the gain matrices (kC
and ke)

where S2, and S2~ are solutions of the controller Riccati equation (CARE) and
the estimator Riccati equation (FARE), respectively

i2/f +ATS2C + ~C1-S2cB2@S2c  = O (18a)

S2& +AS2e +BIB’f-SzeQC#2e  =0 (18b)

Note by comparing Eqs.(6) and (18) that for p-l= O the Hm solution becomes the
H2 solution.

Balanced H2 controller. An H2 controller is balanced if the related CARE and
FARE solutions are equal and diagonal.
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Definition 2. The solutions of CARE and FARE are Hz balanced if

SZC =S2~=Mz, M2=diag(P21,Mzz#...  ~ 2~ J, P2] W22Z. . ●
qlz~ >0 (19)

where P2i is the i-th H2 characteristic (or singular) value.

Denote

‘2= ‘2cp2e9 where P2C =S.j:z, P2e =SJ:2

and let N2 have the following singular value decomposition

N2 = V2M2~

(20a)

.

(20b)

then

Proposition 3, Gawronski (1993). The transformation T2

T2 =P2eU2M~112  = P2: v2M~12 (21)

balances the H2 system.

Next, the relationship between H~ and H2 characteristic values is

derived.

Lemma 2 .  Let p=;nf{m  M@(p)~O}. Then on the segment (P, +rn) all Hm
characteristic values, ~rni i=],...,  n, are smooth nonincreasing functions of
P, and the maximal characteristic value Pml is a nonincreasing convex
function of P.

Proof It is a straightforward corollary of the Theorem 3.1 of Li and Chang
(1993).

Proposition 4. For p ~ m, one obtains Mm ~ 142.
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Proposition 5.

M2+fm, or P2isP@) i=l,...,  N (22)

The connection between the H2 characteristic values and Hankel singular
values is presented in the following proposition.

Proposition 6. For the H2 characteristic values the following holds:

(23)

ProoJ Eq. (23) follows as a special case of Proposition 2 for p a a. o

3. BALANCED CONTROLLERS FOR FLEXIBLE STRUCTURES

Flexible structure. In this paper a flexible structure is defined as a
nondefective, controllable, and observable linear system with distinct

complex conjugate pairs of poles (N poles, N is even), and with small and
negative real parts of the poles. Nondefective systems can have multiple
poles, but the related eigenvectors are independent. This definition is a
narrow interpretation of a more general flexible structure concept, which
includes heavily damped modes, defective matrix A, and an unobservable, or
uncontrollable system. In this paper flexible structures are considered in
the narrower sense only. In the Moore balanced coordinates they consist of
n =N/2 components, see Gawronski and Juang (1990), Gawronski and Williams
(1991), and each component consists of two states.

Approximate equality. In the following sections an approximate quality

between two variables is used in the following sense. Two variables x and y
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are approximately equal (x~y) if x=y+c, and II CII/IIy  IId. For example, if S%

and S* are diagonally dominant, M is a diagonal matrix, and if SW~S~~M ,
then the system is approximately H@ balanced (their diagonal terms ~Wij

s~ij satisfy Smi +&Ci =~ij s~i +&ci =Uij with CCi and &ci small ( I cCi/~%i I <<1,
I c~i/$~i I ‘1).

Modal representation. Let o be the modal matrix of a flexible structure,

@ = [f#l,@2} . . ..#~]. where $i is
space representation (A~,B~, CJ,
on the main diagonal

the i-th flexible mode. In the modal state-
matrix “Am is block-diagonal, with 2x2 blocks

where ~i is the i-th natural frequency of

, i=l,..,,  n (24)

the structure, and ~i is the i-th
modal damping. The matrices Bm, Cm are not unique - they depend on
normalization of the modal matrix Q. The modal and balanced coordinates are
almost identical, and they required re-scaling only, cf. Jonckheere (1984),
and Gregory (1984). In fact, the transformation Rm from the mdal to the
balanced representation

(A,,~,,CJ’(Am,RAIBm,CmRJ

is diagonally dominant, and its diagonal entries depend
modal matrix 0 ‘

c~ = rmi/llrmi  Il%?i, i=],.

where rti is the i-th colon of Rn,, and ei

zero components, the nonzero component equal

,.,n

(25a)

on the scaling of the

(25b)

is the unit vector (all but
to 1).

Open-loop balanced jhible structure. Denote (A,B~, Ck), and k= 1,2 as
state-space representations of a flexible structure. Its controllability
observability grammians WC~ and WO~ are positive-definite and satisfy

10
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Lyapunov equations, Eq.(1), for k=],2. The system representation is balanced
in the sense of Moore if its grammians are diagonal and equal, as in Eq. (2).
For a flexible structure with n components (or N=2n states), the balanced
grammian has the following form, see Jonckheere (1984), and Gregory (1984)

‘k~iag(’kiz~,  k=l,2,  i=l,...,n (26)

where Iz is the unit matrix of order two. Matrix A is almost block-diagonal,

with dominant 2x2 blocks on the main diagonal

AEdiag(AJ,  i=l,...,n (27)

where Ai is given in Eq. (24). Introducing Eqs, (26) and (27) to Eq. (1) gives

For flexible structures the orientation of the Moore balanced coordinates
is almost independent of matrices B and C, and the matrix A is almost
invariant in balanced coordinates, as in FZ. (27). This can be stated as

follows. Let (A~l,B~l,C~l) be the Moore balanced representation of a flexible
structure (A,B1, Cl), let (Ab@bz, cb~ be the Moore balanced representation
of a flexible structure (A,B2, C+, and let R be the transformation from the
first to the second representation, Denote ri the i-th column of R, and then
let

\

&bi=rj/llrillgei, i=]j... n (29)

which is a direct consequence of the closeness of the balanced and modal
representation, shown by Jonckheere (1984), and Gregory (1984).

The results show that in the Moore balanced representation the matrix A

and the orientation of the balanced coordinates are almost invariant under
input and output locations. In fact, the transformation from the first to the
second balanced representation
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(A@~*,  cJ=(A@”lB~~,  q+u (30a)

requires only a re-scaling
is diagonally dominant

of the coordinates, and the transformation matrix

(30b)

of the first and the

properties of flexible
Hm balanced flexible

r212,  . . . . rJJ, ri = Yfi/~~i

where ~lij TX are the i-th Hankel singular values
second system, respectively.

Balanced Hw controller for a jlexible  structure. The
structures, specified above, are now extended to the
structures. It was shown by Gawronskl  (1993) that for flexible structures in
the Moore balanced representation, the solutions of the two Riccati equations
(1) are diagonally dominant.

Let Rk, k=l,2, be the transformation of (A,B~, C~) from the Moore balanced
representation to the H~ balanced representation, and r~i be the i-th column
of Rk, Then:

Proposition 7. For flexible structures

chti  = rfiAl rti II ~t?i k=l,2,  i=l,...,n (31)
\

and the solutions of HCARE and HFARE in Moore balanctxl coordinates are
diagonally dominant

Sw~diag(s%iIJ, SW~diag(s~iIJ, i=l,2,..,, n (32)

Proo$ The diagonally dominant solutions of the Riccati equations,
Eqs.(6a,b), follow from the properties of flexible structures, Eqs.(26)-(28).
Thus the transformation matrices R~ from open- to closed-loop balanced
representation are diagonally dominant.n
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The proposition shows that the orientation of the H~ balanced coordinates
is almost identical to the orientation of the Moore balanced coordinates.

Proposition 8. The open- and closed-loop balanced representations are related
as follows:

(4#h1,Bh2, Ch,, ch+=(Ab,Ri’Bbl,Ri’Bb2,  Cb+i, cb2R~ (33a)

where either k= I or k=2, and the transformation Rk$ is as follows:

R#/iag(rklIz,  rkzIz,  . . . . r@, rti = (S~i/S@J114 (33b)

and the HCARE, HFARE solution N@ is diagonally dominant in the Moore balanced
coordinates

.=J=, i=l,...,n (33C)MWwZiag (~@ZJ? l%,

Proof It is easy to show that the solutions of HCARE and HFARE are
SW~=l@mRk, Smh=R~lSmR~T, and introducing Rk as in Eq.(33b),  one obtains

a balanced solution as in Eq. (33c). ❑

For flexible structures Proposition 2
“and note that for flexible structures the

is extended. Denote Ki = v~i-v~i/~2}
balanced Rlccati equations (6) can

be written as follows using Eqs.(26)-(28) and (32),

(34)

equationThe solution of the i-th

is real and positive for  K i > -~. 25rif.  F rom @.(35),

(35)

one obtains



(36a)

PCOi > vii for 0> Ki >-0. 25%’i~ (36b)

The above results can be specified for the Hz systems by setting p-l =0.
Thus for H2 controller Ki~Y~i, and from Eq. (35), it follows that

is the unique positive

3

1 +4rfiTjJ/2T$i (37)

solution of the balanced H2 Riccati equations. Thus

~zi is the i-th characteristic value of an H2 system, a result obtained by
Gawronski (1993). Also, from Eqs.(36) one obtains

~zis%i=%~i> and P21sP%~l, fOr Ki~o (38a)

P@i > $1’~i! and P>x?l, for 0> Ki > -0.25%’i~ (38b)

4. REDUCED CONTROLLERS FOR FLEXIBLE STRUCTURES

The order of the central Hm controller is equal to the order of the

plant, and may be too large for implementation. Order reduction is
an important design issue. Although the reduction of a generic Hm
is not a straightforward task, an Ho controller for flexible
inherits special properties useful for the controller reduction purposes.

therefore

controller
structures

Reduction index. A reduction index,
controller components, is necessary to
the controller reduction. The following
is introduced:

or an indicator of importance of
make reasonable decisions concerning
reduction index for an Hm controller

14

(39)



The following properties of ~i are obtained from comparison of K i and ai.

since ~i=v~i(]-~~))  thus

Ciisl fOr Ki~o (40a)

] < Olf <1 +114Yji73i for -]/4Y~1 <Ki C O (40b)

The above choice of reduction index is justified by its following properties.

Reduction index and closed-loop poles. (Aw,Ba,  Cd is the state-space
representation of the central Hm controller, see Glover and Doyle (1988) and

Doyle et al. (1989), where

a n d  kC=-13JS%,  k= =-SOS%~, SO= (1-p-&&J-l.  Defining the closed-loop

state variable x%= [xT c~, where c =x-~, one obtains the closed-loop balanced

state-space equations from Eqs. (4) and (41)

i. =A#o +BOW, Z= CJO (42a)

where

(42b)

All =A +B& A 12 =-B#C,  A21 =-P-ZB1~~,  A22 =A +k~C2 +P-2B1~@  (42c)

Proposition 9. Suppose that

~~i<l for i=k+l,...,n, (43)

then
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i.e., the i-th pole is shifted by 2C@ with respect to the open-loop
location,

Prooyl  For flexible structures A is diagonally dominant, and the following
components are diagonally dominant

thus each of four blocks of AO is diagonally dominant. If moi<<l for
i=k+l,..., n, then the i-th diagonal components of A12 and A21 in the closed-

loop matrix AO (see Eq.(42)) are small for i=k+l,... ,n. Thus for those

components the separation principle is valid: gains kCi> k~i are independent.
Furthermore, the i-th diagonal block A22i of the matrix A22 is as follows

The index ~~i serves as an indicator of importance of the i-th balanced
component of the H~ controller. If r~i is small, the i-th component is

considered negligible and can be truncated.

Reduction index and the controller pe~ormance.  Let the vector c be
partitioned as CT= [c:, c~, with c, of dimension n,, c, of dimension n,, and
n,+nt =n. Let the matrix of the reduction indices be arranged in decreasing
order, Z@ =diag (~ml,...,  O@J,  ~~i~m~i+  1, and be divided consistent y with c,
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where xm=diag(~~l, . . .
Mm according y, Mm =diagw~,,M~. The closed-loop system representation

(AO,BO,C~  is rearranged such that the closed-loop matrices are divided
according to the division of c. Hence the closed-loop state is now x:= [.x: SW

and x~= [x c,]

(48)

The reduced-order controller representation is (AO,,BO,,  Co,), and let the
closed-loop system state be denoted by i,.

Proposition 10. For the condition of Eq. (43) satisfied the performance of the
closed-loop system with the reduced-order controller is almost identical to

the full-order controller in the sense that llx,-i,ll -0.

Proof It follows from Eq.(45) that for ~~i~l (i=k+l,...  ,n), one obtains
Iblot,llwlofill=o, and the closed-loop block Aot is almost identical to the
open-loop block At, i.e., ~ot~~t. In this case, from Ms. (42) and (48)) one
obtains

;,~AO$,  +AOtict  +BO,WAO$,+Bo,w=~, (49)

It is easy to see that for an Hz system, when P-l =0, one gets ~~i=~z,
with

as introduced by Gawronski  (1993).
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5. EXAMPLE

The application of the H~ controller to
Fig. 1 is investigated. For this structure 11=70

the truss structure shown in
in, 12 =100 in, each truss has

a cross-section area of 2 inz, elastic modulus of 1@ lb/inz, and mass
density of 2 lb secz/inz. The structural model has N=26 states, or n =13
components. All inputs and outputs are directed vertically. The disturbance w
acts at node n]. The output z at node n2 is minimized. The controlled inputs
u and outputs y are collocated at node n3, and the components of Cl and B1
are 3(XI at node n3; other components are zero.

The system H~ characteristic values (solid line), Hz characteristic
values (dashed line), and Hankel singular values (dot-dashed line) are
compared in Fig.2, showing that the relationship of Eq. (38) holds. The
critical value is P=469.

In Fig.3 the H~ characteristic values obtained from Eq. (6) are compared

with its approximate values from Eq. (35), showing that the approximate values
are close to the exact ones. The H~ and Hz reduction indices are shown in
Fig.4; this

Open-
reduction

figure shows that they coincide for ~~i<< 1.

and closed-loop impulse responses are comparal in Fig.5. The H@
index satisfies the condition in Eq. (43) for k=8,... ,13, i.e.,

o’m~ <00 old. Hence the controller can be reduced to 14 states. Indeed, the
controller of order 14 (7 components) is stable, and its performance is
almost identical to the full-order controller (closed-loop impulse responses
of the full- and reduced-order controllers overlap), while the closed-loop
systems with controllers of order 13 (6 components) or less are unstable.

The closeness of the open-loop and closed-loop balanced representations,
as well as the modal representation, is estimated with the VectOrS &h 1 i,

~~2i> a n d  &~i, i=l,..., 13, as defined in F4s.(33) and (29). For the truss
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under consideration, the largest values of these vectors were typically in
the range 0.98-0.99, with some in the range 0.9-0.98. The remaining values of
the vectors were typically in the range 0-0.01, with some in the range 0.01-
0.1, thus they satisfied the conditions in Eqs.(31 ) and (29). The closeness
of the open- and closed-loop balancti  representations, as well as modal
representation, was also tested with simulations of the H~ controller
performance in the H* balanced coordinates, in the Moore balanc~
coordinates, and in the modal
close to each other for each
or the reduced-order controller.

6.

coordinates. The results

set of coordinates, either

CONCLUSIONS

obtained were very
for the full-order,

The balanced solution of the Hm Riccati equations was found, and its
properties derived. Its relationship to H2 balanced controllers and to the

open-loop balanced representation was determined.

Several properties of the H~ balanced controllers were derived for
flexible structures. The HW characteristic values, their upper and lower
bounds, and pole placement were derived from the generic properties of
flexible structures. The controller raiuction index is introduced as tool for
designing a reduced-order H@ controller of comparable performance to the
full-order controller. It is shown that balanced Hz controllers are special

cases of balanced Hw controllers. An example illustrated the properties and
the design process of an Hm controller for a flexible structure.

Some of the results are approximate, but the approximation error in most
cases is small or negligible. Hence, if implemented correctly, the proposed

method can be used as a design tool for reduced-order H@ controllers.
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Fig. 1. Truss structure.
Fig.2. H@, Hz, and Hankel singular values of the truss.
Fig.3. Exact and approximate@  singular values.
Fig.4. H~, Hz reduction indices.

Fig.5. Open- and closed-loop system responses.
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